§ 63.1294

cleaner, the source-wide emission limitation in §63.1299.

§ 63.1294 Standards for slabstock flexible polyurethane foam production—diisocyanate emissions.

Each new and existing slabstock affected source shall comply with the provisions of this section.

- (a) Diisocyanate storage vessels. Diisocyanate storage vessels shall be equipped with either a system meeting the requirements in paragraph (a)(1) of this section, or a carbon adsorption system meeting the requirements of paragraph (a)(2) of this section.
- (1) The storage vessel shall be equipped with a vapor return line from the storage vessel to the tank truck or rail car that is connected during unloading.
- (i) During each unloading event, the vapor return line shall be inspected for leaks by visual, audible, or any other detection method.
- (ii) When a leak is detected, it shall be repaired as soon as practicable, but not later than the subsequent unloading event.
- (2) The storage vessel shall be equipped with a carbon adsorption system, meeting the monitoring requirements of §63.1303(a), that routes displaced vapors through activated carbon before being discharged to the atmosphere. The owner or operator shall replace the existing carbon with fresh carbon upon indication of breakthrough before the next unloading event.
- (b) Transfer pumps in diisocyanate service. Each transfer pump in diisocyanate service shall meet the requirements of paragraph (b)(1) or (b)(2) of this section.
- (1) The pump shall be a sealless pump; or
- (2) The pump shall be a submerged pump system meeting the requirements in paragraphs (b)(2)(i) through (iii) of this section.
- (i) The pump shall be completely immersed in bis(2-ethylhexyl)phthalate (DEHP, CAS #118-81-7), 2(methyloctyl)phthalate (DINP, CAS #68515-48-0), or another neutral oil.
- (ii) The pump shall be visually monitored weekly to detect leaks,

- (iii) When a leak is detected, it shall be repaired in accordance with the procedures in paragraphs (b)(2)(iii)(A) and (B) of this section, except as provided in paragraph (d) of this section.
- (A) The leak shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected.
- (B) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected. First attempts at repair include, but are not limited to, the following practices where practicable:
 - (1) Tightening of packing gland nuts.
- (2) Ensuring that the seal flush is operating at design pressure and temperature.
- (c) Other components in diisocyanate service. If evidence of a leak is found by visual, audible, or any other detection method, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in paragraph (d) of this section. The first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (d) *Delay of repair*. (1) Delay of repair of equipment for which leaks have been detected is allowed for equipment that is isolated from the process and that does not remain in diisocyanate service.
- (2) Delay of repair for valves and connectors is also allowed if:
- (i) The owner or operator determines that diisocyanate emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and
- (ii) The purged material is collected and destroyed or recovered in a control device when repair procedures are effected.
- (3) Delay of repair for pumps is also allowed if repair requires replacing the existing seal design with a sealless pump, and repair is completed as soon as practicable, but not later than 6 months after the leak was detected.

§ 63.1295 Standards for slabstock flexible polyurethane foam production— HAP ABA storage vessels.

Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in §63.1293(a) shall control HAP ABA storage vessels in accordance with the provisions of this section.

- (a) Each HAP ABA storage vessel shall be equipped with either a vapor balance system meeting the requirements in paragraph (b) of this section, or a carbon adsorption system meeting the requirements of paragraph (c) of this section.
- (b) The storage vessel shall be equipped with a vapor balance system. The owner or operator shall ensure that the vapor return line from the storage vessel to the tank truck or rail car is connected during unloading.
- (1) During each unloading event, the vapor return line shall be inspected for leaks by visual, audible, olfactory, or any other detection method.
- (2) When a leak is detected, it shall be repaired as soon as practicable, but not later than the subsequent unloading event.
- (c) The storage vessel shall be equipped with a carbon adsorption system, meeting the monitoring requirements of §63.1303(a), that routes displaced vapors through activated carbon before discharging to the atmosphere. The owner or operator shall replace the existing carbon with fresh carbon upon indication of breakthrough before the next unloading event.

§63.1296 Standards for slabstock flexible polyurethane foam production— HAP ABA equipment leaks.

Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in §63.1293(a) shall control HAP ABA emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines in accordance with the provisions in this section.

- (a) *Pumps*. Each pump in HAP ABA service shall be controlled in accordance with either paragraph (a)(1) or (a)(2) of this section.
- (1) The pump shall be a sealless pump, or
- (2) Each pump shall be monitored for leaks in accordance with paragraphs (a)(2)(i) and (ii) of this section. Leaks

shall be repaired in accordance with paragraph (a)(2)(iii) of this section.

- (i) Each pump shall be monitored quarterly to detect leaks by the method specified in §63.1304(a). If an instrument reading of 10,000 parts per million (ppm) or greater is measured, a leak is detected.
- (ii) Each pump shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal. If there are indications of liquids dripping from the pump seal, a leak is detected.
- (iii) When a leak is detected, it shall be repaired in accordance with the procedures in paragraphs (a)(2)(iii)(A) and (B) of this section, except as provided in paragraph (f) of this section.
- (A) The leak shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected.
- (B) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected. First attempts at repair include, but are not limited to, the following practices, where practicable:
 - (1) Tightening of packing gland nuts.
 (2) Ensuring that the seal flush is operating at design pressure and tom-
- erating at design pressure and temperature.
- (b) Valves. Each valve in HAP ABA service shall be monitored for leaks in accordance with paragraph (b)(1) of this section, except as provided in paragraphs (b)(3) and (4) of this section. Leaks shall be repaired in accordance with paragraph (b)(2) of this section.
- (1) Each valve shall be monitored quarterly to detect leaks by the method specified in §63.1304(a). If an instrument reading of 10,000 parts per million or greater is measured, a leak is detected.
- (2) When a leak is detected, the owner or operator shall repair the leak in accordance with the procedures in paragraphs (b)(2)(i) and (ii) of this section, except as provided in paragraph (f) of this section.
- (i) The leak shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected.
- (ii) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected. First attempts at repair include, but are not